Proteomic characterization of oyster shell organic matrix proteins (OMP)
نویسندگان
چکیده
Oysters are economically and ecologically important bivalves, with its calcareous shell and delicious meat. The shell composition is a blend of inorganic crystals and shell proteins that form an organic matrix which protects the soft inner tissue of the oyster. The objective of the study was to compare the composition of organic matrix proteins (OMP) of two phylogenetically related species: the Hong Kong oyster (Crassostrea hongkongensis) and the Portuguese oyster (Crassostrea angulata) which differ in their shell hardness and mechanical properties. C. hongkongensis shells are comparatively stronger than C. angulata. Modern shotgun proteomics has been used to understand the nature of the OMP and the variations observed in the mechanical properties of these two species of oyster shells. After visualizing proteins on the one (1DE) and two-dimensional electrophoresis (2DE) gels, the protein spots and their intensities were compared using PDQuest software and 14 proteins of C. hongkongensis were found to be significantly different (student׳s t-test; p<0.05) when compared to the C. angulata. Furthermore, shell OMP separated on 1DE gels were processed using Triple TOF5600 mass spectrometry and 42 proteins of C. hongkongensis and 37 of C. angulata identified. A Circos based comparative analysis of the shell proteins of both oyster species were prepared against the shell proteome of other shell forming gastropods and molluscs to study the evolutionary conservation of OMP and their function. This comparative proteomics expanded our understating of the molecular mechanism behind the shells having different hardness and mechanical properties.
منابع مشابه
Visualization of shell matrix proteins in hemocytes and tissues of the Eastern oyster, Crassostrea virginica.
The tissues of the oyster were examined for the presence of shell matrix proteins (SMPs) using a combination of Western, proteomic, and epi-fluorescent microscopy techniques. SMP, including 48 and 55 kDa phosphoproteins, was detected in the epithelial cells of mantle, gill, heart, and adductor muscle and linings of arteries and veins. The 48 kDa SMP circulates continuously within the hemolymph,...
متن کاملNovel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins
Nacreous layers of pearl oyster are one of the major functional biominerals. By participating in organic compound-crystal interactions, they assemble into consecutive mineral lamellae-like photonic crystals. Their biomineralization mechanisms are controlled by macromolecules; however, they are largely unknown. Here, we report two novel lectins termed PPL2A and PPL2B, which were isolated from th...
متن کاملData set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification
Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shel...
متن کاملData set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization
Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mech...
متن کاملRapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains.
The lysine (K)-rich mantle protein (KRMP) and shematrin protein families are unique to the organic matrices of pearl oyster shells. Similar to other proteins that are constituents of tough, extracellular structures, such as spider silk, shematrins and KRMPs, contain repetitive, low-complexity domains (RLCDs). Comprehensive analysis of available gene sequences in three species of pearl oyster us...
متن کامل